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Abstract: 
A modified upside-down bathtub-shaped hazard function distribution that we have recommended 
in this study is created by modifyinga three-parameter life-time distribution. The skewness, and 
kurtosis measures, quantile function, survival function, hazard rate function, the probability 
density function, and  cumulative distribution function are only a few of the mathematical and 
statistical properties of the distribution that we have been covered.Utilizing MLE, LSE, and 
CVME approaches, the model parameters of the suggested model are estimated. The suggested 
model's goodness of fit is also assessed by fitting it against a number of other life-time models 
using two real data sets. 

Keywords: Modified distribution, Maximum likelihood estimation, Quantile function, 
Reliability function,  

1. Introduction 
 
Lifetime distributions are frequently used in reliability and survival studies to measure the 
average lifespan of system and device components. In disciplines including biological science, 
information technology, engineering, insurance, etc., lifetime distributions are often employed. 
In statistical literature, a wide variety of continuous probability distributions, including Cauchy, 
exponential, gamma, and Weibull, have frequently been employed to assess lifetime data.The 
modified distributions are often very helpful to investigate additional characteristics of the events 
that cannot be explored by classical distributions. Many modified distributions have been created 
by one or more shape parameters and found that they are flexible to analyze life-time datasets 
(Sheikh et al., 1987). Some of the well-known modified models are found in literature as 
(Rasekhi et al., 2017) have defined the modified exponential distribution whose hazard rate 
function (hrf) has increasing and S-shaped. Similarly two-parameter modified weighted 
exponential distribution has defined by (Chesneau et al., 2022) by mixing exponential and 
weighted exponential distributions. Lai et al., (2003) have defined a modified Weibull 
distribution having a bathtub-shaped failure-rate function derived as a limiting case of the Beta 
Integrated Model. Another modification of the Weibull distribution was introduced by (Sarhan & 
Zaindin, 2009) and named it modified Weibull distribution and new modified Weibull 
distribution was defined (Almalki& Yuan, 2013). A five-parameter model called the beta 
modified Weibull distribution is recommended by (Silva, et al., 2010) having a monotone, 
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unimodal and bathtub-shaped hazard functions.A reduced new modified Weibull distribution is 
introduced by (Almalki, 2018). The Kumaraswamy modified Weibull distribution is 
recommended by (Cordeiro et al., 2014), Poisson modified Weibull distribution (Abd 
ElMonsef et al., 2022) and modified inverse NHE distribution (Chaudhary et al., 2022). 

In the study of survival and reliability of a component or event or a system, we may 
encounter with three-step behavior of the failure rate will be observed at that situation a 
distribution with a bathtub and upside down bathtub-shaped (UDB) failure rate would be 
appropriate (Rajarshi & Rajarshi, 1988). With an increasing, decreasing, bathtub-shaped, and 
upside-down bathtub-shaped failure rate, Dimitrakopoulou et al., (2007) presented a three-
parameter life-time distribution. The hazard and probability density functions (pdf) of UBD 
distribution is in the form of, 

� � � � � �
11 1 ; 0, , , 0

�� ���� � � � �
��� � � �h x x x x

� � � � � �� � � �11 1 exp 1 1 ; 0, , , 0
� �� � ���� � � � � �
��� � � � � �f x x x x x (1) 

It is a special case of Weibull distribution, when α = 1, it reduces to Weibull distribution. In this 
study we have modifiedequation (1) to introduce proposedmodel. 

The goal of this study is to propose a more flexible model that can have a failure rate that 
is shaped like a bathtub, an upside-down bathtub, an increasing or decreasing, with the fewest 
possible parameters.The residualsections of the suggested model are structured as follows. We 
suggest a novel distribution and discuss various distributional properties in section 2.LSE), MLE, 
and CVME approaches are three popular estimation techniques that we have taken into 
consideration when estimating the parameters of the suggested distribution.In section 3,using the 
observed information matrix, we have created asymptotic confidence intervals for the maximum 
likelihood (ML) estimate. A real data set has been examined in section 4 to examine the potential 
uses and capabilities of the suggested distribution. The recommendedmodel's goodness of fit is 
assessed by fitting it to a real data set and comparing it to a few other existing distributions. 
Finally, we offer some concluding remarks in section 5. 

2. New distribution 

A three-parameter new modified upside down bathtub-shaped hazard function (MUBD) 
distribution is introduced by modifying the distribution defined by (Dimitrakopoulou et al., 
2007).  

Cumulative distribution function (CDF) of MUBD: 
The CDF of MUBD model with parameters � �, and � is 

� � � �1 1 1
�� ��� �� � � �� �

� �
/ xF x exp x e ;  > 0 , 0 , 0  and    (0, ) � � �� � � �x  (2) 

The probability density function (PDF): 
The associatedPDF of MUBD distribution is 

� � � � � � � � � �11 1 1 1/ x / x / xf x / x x e x e exp x e
� �� � � � � �� � �
�� � � �� �� � � � �� �

� �
   (3) 

Survival Function: 
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� � � �1 1
�� ��� �� � �� �

� �
/ xS x exp x e

Hazard Function:  

 � � � � � � 11 1
�� � � �� � �

�� � � �� � �/ x / xH( x ) / x x e x e ; > 0 , 0 , 0� � �� �   (4) 
The Quantile function: 

� �� �� �11 1 1 0 0 1log log p log x / x ; p�
� �� �� �� � � � � � � �� �� �� �� �

   (5) 

Solving equation (5) for x we will get the quantile function where p follows uniform distribution 
[0, 1]. 

Skewness and Kurtosis 

Based on quartiles, the coefficient of skewness can be obtained using the expression 

  3 1 2

3 1

2� �
�

�k
Q Q Q

S
Q Q

                                                                                     (6) 

where 1 2 3,   Q Q and Q are lower, median and lower quartiles respectively.  

Moors (1988) presented the concept that the kurtosis coefficient depends on the octiles, and it 
may be written as 

 � � � � � � � �
� � � �

0.375 0.125 0.625 0.875
0.75 0.25

� � �
�

�M

Q Q Q Q
K

Q Q
       (7) 

Figure 1 displays plots of the suggested distribution's probability density function and hazard rate 
function for various parameter values. 

 
Figure 1. Hazard function (right part) and density function (left part) shapes of numerous α, β 

and λvalues. 

3. Parameter estimation methods 

a) Method of Maximum Likelihood Estimation (MLE)  
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Let a random sample with size ‘n’ drawnfrom the proposed model be � �1  , ,� � nx x x , then the log 
likelihood function can be expressed as, 

� � � � � � � � � �
1 1 1 1 1

1 1 �� � � � � �
� � � � �

� � � � � � � � � �� � � � ��
n n n n n

i i i i i
i i i i i

n ln ln / x ln x / x ln W ( x ) n W( x ) (8) 

Where 1 �� �� � i/ x
i iW( x ) x e

By differentiating (8) with respect to β ,λ andα,  we have 
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x ex
x e W( x )
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We can get the ML estimators of the proposed distribution by setting these non-linear equations 
to zero and figuring out solutions for the unknown parameters (α, β, λ). Since it is impossible to 
calculate these equations manually, one can solve them by using the suitable computer software. 
Let ( , , )� � �� � be the parameter vector and the related maximum likelihood estimation for �  be 

represented by ˆ ˆˆ ˆ( , , )� � �� � , then resulting asymptotic normality is � � � �� � 1
3

ˆ 0,
�� �� �� � �� �N K .Here, 

Fisher’s information matrix is denoted by � ��K  which is given by, 

� �
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The MLE's asymptotic variance � �� � 1�
�K  is meaningless because in actuality we don't know � . 

The estimated parameter values are therefore plugged in to approximate the asymptotic variance. 
The information matrix � ��K  is estimated by the following observed fisher information 
matrix ˆ( )�O . 
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where H denotes the Hessian matrix. 

The observed information matrix is produced by Newton-Raphson approach with the aim of 
maximization of likelihood. As a result, variance-covariance matrix can be provided through, 

� �
� �ˆ

1

|

ˆ ˆˆ ˆ ˆvar( ) cov( , ) cov( , )
ˆ ˆ ˆ ˆˆcov( , ) var( ) cov( , )
ˆ ˆ ˆ ˆˆcov( , ) cov( , ) var( )

� � � � �

� � � � �

� � � � �
���

�
� �
� �� � � �� � �� �� � � �
� �
� �

H  (9) 

So,by MLEs’asymptotic normality, the following can be used to create approximate 100(1-δ) % 
confidence intervals for calculating α, β and λ: 

/2ˆ ˆvar( )�� �� Z  , / 2
ˆ ˆvar( )�� �� Z  and / 2

ˆ ˆvar( )�� �� Z  (10) 

Here, /2Z� represents the upper percentile of standard normal variate. 

b)  Least-square estimation(LSE) method  

The estimation of α, β and λ of MUBDmodel employing least-square estimation method can be 
found by minimizing (11) with regard to α, β and λ. 
 

 � �
2

( )
1

; , , ( )
1

� � �
�

� �� �� ��� �
�

n

i
i

iD x F x
n

       (11) 

 
AssumeCDFfor the ordered random variables

� � � �1 nX  X��� be ( )iF X .Here, � �1 , ,� � nX X X represents a 
random sample with size n drawn from a distribution function F (.).Thus, by minimizing (12) 
with regard to α, β and λ, the LS estimators of α, β and λmay be determined.  
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Where / ( )

( ) ( )( ) 1 �� �
� �

x i
i iW x x e . 

 
Differentiating (12) with regard to α, β and λ 
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Therefore, by simultaneously solving the three equations above, the LS estimators forα, β and λ 
can be obtained. 
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c) Cramer-Von-Mises estimation(CVME) Method  
 

By minimizing the function (13), the CVMEs of α, β and λ can be found. 
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Differentiating (13) with regard to α, β and λ 
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We will get the CVM estimators after solving the following non-linear equationssimultaneously. 

= 0, = 0  0
� � �
� � �

�
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A A Aand  (14) 

4. Application to Real Dataset 

In this section, we have used two real datasets from previous research to show how the MUBD 
can be applied. . 

Dataset-1 
This real data set is used by (Bader & Priest, 1982). 
1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 
2.027, 2.055, 2.063, 2.098, 2.14, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 
2.359, 2.382, 2.382, 2.426,2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.57, 
2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 
2.848, 2.88, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585 
 
The likelihood function (8) is maximized to determine the MLEs by employing the maxLik() 
function in R software (R Core Team, 2022) and (Wickham &Grolemund, 2016)). Log-
Likelihood value acquired is l = -48.8512, which we have attained and the LSE’s, MLE’s and 
CVME’s for α, β, and λ are displayed in Table 1. Further we have calculated the Akaike 
information criterion (AIC) and Kolmogorov-Smirnov (KS) test statistics for three estimation 
approaches. 
 

Table 1 
Log-likelihood, Estimated parameters, AIC and Kolmogorov-Smirnov (KS) statistics 
Estimation 
Method 

alpha Beta lambda LL AIC KS(p-value) 

MLE 0.8559 3.0133 7.0336 -48.8512 103.7024 0.0407(0.9996) 
LSE 0.8772 3.0125 7.1252 -48.8656 103.7312 0.0387(0.9998) 
CVME 0.8735 3.0876 7.2803 -48.9455 103.8911 0.0362(0.9999) 
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Table 1 shows that the estimated parameters as well as AIC and p-values corresponding to 
different methods of estimation has less variation. 
For the ML estimations α, β and λ, Figure 2 displays the profile log-likelihood function graphs. 
We discover that the three ML estimationsβ, λ, andα can each be individually created. 

 
Figure. 2 ML estimations of α, β, and λ represented as profile log-likelihood function graphs 

We frequently make use of the PDF and CDF plots to assess the goodness of fit of a 
suggestedmodel. We must plot Q-Q and P-P graphs in order to obtain the additional 
information.The P-P plot emphasizes the lack of fit, whereas Q-Q plot may deliver information 
on lack of fit towards distribution's tails. The excellent fit of the MUBD model to the data is 
shown in Figure 3. 
 

 
Figure 3. TheQ-Q graph (right part) and P-P graph (left part) for MUBDmodel. 

 
We have chosen a few well-known distributions for comparison in order to show the MUBD 
distribution's goodness of fit. These are Modified Weibull (MW)(Lai et al., 2003),Exponentiated 
Exponential Poisson (EEP)(Ristić&Nadarajah, 2014),Generalized Exponential Extension (GEE) 
distribution (Lemonte, 2013),Weibull Extension Model (Tang et al., 2003) and Generalized 
Exponential (GE) distribution (Gupta &Kundu, 1999). 
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Figure 4.Q-Q plot (right part) of MLE, LSE, and CVM, as well as a histogram and the density 
function of fitted distributions (left part). 

In order to evaluate the potential of the proposed model, the values of the Corrected Akaike 
information criterion (CAIC), Hannan-Quinn information criterion (HQIC), Akaike information 
criterion (AIC), and Bayesian information criterion (BIC) are computed. The findings are 
displayed in Table 2. 

Table 2 
AIC, BIC, CAIC, HQIC, and Log-likelihood (LL) of MUBD distribution 
Distributions LL AIC BIC CAIC HQIC
MUBD -48.8512 103.7024 110.4047  104.0716 106.3614 
EEP -48.8574 103.7148 110.4172 104.0841 106.3741 
WE  -49.6053 105.2106 111.9129 105.5798 107.8696 
GEE -50.4490 106.8981 113.6004 107.2673 109.5571 
MW -53.5342 113.0683 119.7706  113.4375 115.7273 
GE  -54.6201 113.2403 117.7085 113.4221  115.0130 

 
Table 2 shows that the information criteria values are less compared to most of the models taken 
in consideration showing that proposed model fits better compared to most of considered models 
applied on real data set 1.  
Fitted density function, empirical distribution function, the histogram, and estimated distribution 
function are all displayed for MUBD, EEP, MW, GEE, WE, and GE distributions in Figure 5. 
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Figure 5.Empirical and estimated distribution functions (right panel) and the density function 

and histogram of fitted distributions (left panel)  
 
Based on the results of the Kolmogorov-Smirnov (KS), Cramer-Von Mises (W) statistics and, 
Anderson-Darling (A2), Table 3 compares the goodness-of-fit for MUBD model with other 
selected distributions. The MUBD distribution has a lower test statistic value and a higher p-
value, which leads us to draw the conclusion that it provides findings that are more accurately fit 
to the distribution and more reliable than those from other distributions used as a comparison 
(table 3). 

Table 3 
The p-value related with statistics of goodness-of-fit 

Distributions KS(p-value) W(p-value) A2(p-value) 
MUBD 0.0407(0.9998) 0.0165(0.9993) 0.1540(0.9983) 
EEP 0.0366(0.9999) 0.0161(0.9994) 0.1455(0.9989)  
MW 0.0834(0.7232) 0.1224(0.4867) 0.9061(0.4101) 
GEE 0.0594(0.9678) 0.0502(0.8767) 0.3904(0.8578) 
WE 0.0563(0.9809) 0.0347(0.9593) 0.2764(0.9546)  
GE 0.0992(0.5060) 0.1733(0.3263) 1.1667(0.2804)  

 

Table 3 shows that the test statistics are less and corresponding p-values  are larger compared to 
most of the models taken in consideration showing that proposed model fits better compared to 
most of considered models applied on  large real data set 1.  

Dataset-2 
The data set given below represents the number of major earthquakes (7.0+) from the United 
States Geological Survey (USGS) between 1990 and 2018 recorded are provided (USGS, 1990- 
2018). 
18, 17, 13, 12, 13, 20, 15, 16, 12, 18, 15, 16, 13, 15, 16, 11, 11, 18, 12, 17, 24, 20, 16, 19, 12,19, 16, 7, 17 
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Log-Likelihood value, the LSE’s, MLE’s and CVME’s for α, β, and λ are displayed in Table 4. 
Further we have calculated the Akaike information criterion (AIC) and Kolmogorov-Smirnov 
(KS) test statistics for three estimation approaches. 

Table 4 
Log-likelihood, Estimated parameters, AIC and Kolmogorov-Smirnov (KS) statistics 
Estimation 
Method 

alpha beta lambda LL AIC KS(p-value) 

MLE 1.4782 0.9971 55.0727 -77.2204 160.4407 0.1179( 0.8147) 
LSE 2.5576  0.7220 53.6955 -77.2808 160.5617 0.1020( 0.9236) 
CVME 3.6678 0.6370 56.2961 -77.5241 161.0482 0.1079 (0.8884) 

Table 4 shows that parameters estimated by LSE and CVME fits the dataset 2 compared to MLE. 
The Q-Q and P-P plots of the MUBD model to the second data set is shown in Figure 6. 
 

 
Figure 6. The Q-Q graph (right part) and P-P graph (left part) for MUBDmodel. 

 
We have chosen a few well-known distributions for comparison in order to show the MUBD 
distribution's goodness of fit. These are Generalized Weibull Extension (GWE) (Sarhan and 
Apaloo, 2013), Logistic Inverse Exponential (LIE) Distribution (Chaudhary & Kumar, 2020), 
Generalized Exponential (GE) distribution (Gupta   &   Kundu, 1999) , Odd Lomax Exponential 
(OLE) distribution ( Ogunsanya et al.,2019) and Exponentiated Generalized inverted Exponential 
(EGIE) distribution (Oguntunde et al., 2014).  
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Figure 7.ECDF (right part) of MLE, LSE, and CVM, as well as a histogram and the density 
function of fitted distributions (left part). 

In order to evaluate the potential of the proposed model, the values of the Corrected Akaike 
information criterion (CAIC), Hannan-Quinn information criterion (HQIC), Akaike information 
criterion (AIC), and Bayesian information criterion (BIC) are computed. The findings are 
displayed in Table 5. 

Table 5 
AIC, BIC, CAIC, HQIC, and Log-likelihood (LL) of MUBD distribution 

Distributions LL AIC BIC CAIC HQIC
MUBD -77.2204 160.4407 164.5426 161.4007 161.7254 
EGIE -77.2329 160.4658 164.5677 161.4258 161.7505 
GWE -77.8310 161.6619 165.7638 162.6219 162.9466 
LIE -78.6688 161.3376 164.0721 161.7991 162.1940 
GE -79.8132 163.6263 166.3609 164.0878 164.4827 
OLE -81.8507 169.7014 173.8033 170.6614 170.9861 

 
Table 5 shows that information criteria values are smaller than most of distributions taken in 
consideration indicating that proposed model fits small real dataset 2 better compared to existing 
distributions under consideration.  
Fitted density function, empirical distribution function, the histogram, and estimated distribution 
function are displayed for the MUBD, EGIE, GWE, LIE, GE, and OLE distributions in Figure 8. 
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Figure 8.Empirical and estimated distribution functions (right panel) and the density function 

and histogram of fitted distributions (left panel)  
Based on the results of the Kolmogorov-Smirnov (KS), Cramer-Von Mises (W) statistics and, 
Anderson-Darling (A2), Table 3 compares the goodness-of-fit for MUBD model with other 
selected distributions. The MUBD distribution has a lower test statistic value and a higher p-
value, which leads us to draw the conclusion that it provides findings that are more accurately fit 
to the distribution and more reliable than those from other distributions used as a comparison 
(table 6). 

Table 6 
The p-value related with statistics of goodness-of-fit 

Distributions KS(p-value) W(p-value) A2(p-value) 
MUBD 0.1180(0.8147) 0.0580(0.8303) 0.3759(0.8712)  
EGIE 0.1181(0.8131)  0.0582(0.8294)  0.3774(0.8699)  
GWE 0.1423(0.5995) 0.0817(0.6860)  0.4902(0.7555)  
LIE 0.1429(0.5944)  0.0912(0.6331)  0.5847(0.6611)  
GE 0.1668(0.3945) 0.1284(0.4651) 0.8118(0.4715)  
OLE 0.1982(0.2048)  0.2353(0.2086) 1.5068(0.1750)  

Table 6 shows that the test statistics are less and corresponding p-values are larger compared to 
most of the models taken in consideration showing that proposed model fits better compared to 
existing considered models applied on real data set 2.  

5. Concluding Remarks 
A new three-parameter modified upside down bathtub-shaped hazard function distribution is 
presented. The forms of the quantile function, skewness, and kurtosis, the probability density, 
cumulative density, hazard rate functions, and survival function, as well as other crucial 
statistical characteristics of the suggested distribution, are all explained. We have applied the 
approaches of CVME, LSE, and MLE to estimate the model parameters.According to our 
analysis, CVME and LSE outperform MLEs estimators by a significant margin.With the use of 
two real datasets (both large and small samples), the applicability, suitability, the superiority of 
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MUBD over other distributions are examined. It is found that this suggested distribution 
outperforms existing lifetime models. In the fields of survival analysis, probability theory, and 
practical statistics, we expect that this distribution will serve as an alternative. 
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